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We remark that  for q = 0 the invert.ibility quest.ion is trivial,  for 
q = 1 our result is the  same as the Sain-hIassey result., and  our 
result, is stronger for q > 1 .  I n  particular, if D = 0, we have 

CoroUary 2: The system 

z(k + 1) = A z(k) + B u(k)  (25) 

= c 4 k )  (26) 

is invertible if and only if it is (n - m + 1) - delay invert,ible. 
We also have the folloEing st.rengt.hened corollary, t.he proof of 

which involves a trivial modification of the analogous result in [I] 
if we keep the above proof of Corollary 1 in mind. 

Corollary 3: The system (3),(4) is invertible if and only if there is 
no input segment L~,,++I # 0 followed by all zeroes, which produces 
the all zero output sequence in (3),(4) rvhen zn = 0. 0 

Similarly, we obt.ain a strengthened version of t.he single matrix 
result  in 111 and 131. 

Theorem 2; The system (3),(4) is invertible if and only if 

rank ( X )  = (n - q + 2 ) m  

where X is the (2n - q + 2 ) p  X (n - q + 2)m matrix 

‘ D  0 ... 0 
C B  D ... 0 

Corollary 4: The rank condit.ion 

rank (X) = (n, - q + 2)nt 

holds if and only if 

rank ( N , , + + , )  - rank (X,,+) = at.. (30) 

We also n0t.e that in  a similar manner  one  can obt.ain strengthened 
versions of the necessary and sufficient. conditions, presented  in [ I ]  
and 131, for the  dual concept. of functional  controllability. 

IV. CONCLUSIONS 

In this note we have  obtained  a strengthened version of the 
necessary and sufficient. conditions, derived in [1]-[3], for linear 
system invert.ibility. These  results  reduce the question of inverti- 
bility to  a  set of rank  tests for  certain  matrices, and our st.rengthening 
of these results depends on a careful counting argument .  

The quest.ion of system  invert.ibility is important  in  such applica- 
tions as the design of encoding-decoding systems, and has received a 
great deal of attention in  t,he literature. We refer t.he reader t.o more 
general  invertibility  results  in [ 6 ] - [ 9 ] .  In  particular  the finite group 
system  results  in [6]-[S]  are  quite similar in flavor to  the results in 
[ I ] - [3 ]  and  in  this note. 
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Minimal Order  Observers  and Certain Singular  Problems 
of Optimal Estimation and  Control 

Abstract-It is shown that a  Riccati  equation of particular  struc- 
ture which arises  in a number of singular optimal estimation and 
control  processes can be reduced in order. This fact  leads directly 
to a  procedure  for the design of a  class of minimal order observers, 
the  structure of which can be  interpreted as  the limiting  form of 
appropriate Kalman  estimators with  vanishing  observation noise. 

I. ISTRODCCTION 

-4s might he anticipated, the theory of minimal order observers 
can  be closely allied wit.h certain singular problenls of optimal 
est,imat.ion and control. This commonality is particularly  striking 
when it is recognized that. minimal order observer design can be 
accomplished through solution of a matrix Riccati  equation which 
is identical  in  st.ructure to those  arising in singular  optimal regulat.or 
problenls and rrhich  admits a reduction in order. 

It, is known that.  the problem of minimal  order  observer design for 
an nt.h order, completely observable  system  with r independent 
outputs can be convenient.ly solved by solution of an (n. - r )  x 
( n  - r )  dimension nlatris R.iccati equation [ I ] .  

In  what follows i t  is shorn  that  the required Riccati  equation can 
be derived through reduction of a larger n X n Riccati  equation and 
that., in appropriate circumst.ances, observers designed in  this way 
are limiting  forms of Kalman est.imatots  for  vanishing observat.ion 
noise in  the sense of Friedland [2 ] .  Furthermore, it. is observed that 
certain  Biccati  equations  obtained by Friedland [2] and Xioylan and 
Moore [3]  for singular optimal  regulator problems are  structured 
identically to t.hat obtained  for the observer deign problem and can 
be reduced in  order. Certain problenls of estimating the  state of a 
linear dynanlical  system from observation of outputs  corrupted  by 
correlated noise are duals of these singular regulator problenls and 
consequently can be solved by identical procedures. 

11. ORDER  REDUCTIOK OF .I CL.ISS OF RICC.ITI EQCATIOXS 

Let. C be an r X n nlatris of full rank  and let Co* denote  a right. 

Let P be an n X n. synlmetric  matriv which satisfies the relation 
inverse of C. 

CP = 0 ( 1 )  

as well as the algebraic Iliccati equation 

where S > 0 is a  symmetric r x r matrix, -11 2 0 is a synmletric 
n X n matrix which has the pr0pert.y 

c31 = 0. (3 1 

J is an r X R matrix which ail1 be reqnired to satisfy a control1abilit.y 
condition given below. A method \ d l  be given for obtaining P 
satisfying both ( 1 )  and ( 2 )  by solving a Iliccati equation of dimension 
( n  - r )  X (n - P). 
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Define anot.her right inveme of C 

c* = co* + P A ’ J ’ S - 1  (4) 

and also t.he matrices &, 4 ,  eo and b, \E, e as follows: 
-40, At are (n - r )  X n matrices composed, respectively, of n - r 

linearly independent rows of [ I  - Co*C] and [ I  - C*C] 

\ E o  = [ - 3  \E = [ -3 
q0-’ = 80 = [eo1 I ec2],*-1 = e = [e1 I e.]. 

t,+-+ ++* 
r n - r  r n - r  

The controllability  requirement imposed on J can now be stated. 
I t  is assumed that. J is specified such that.  the pair (OO’A’AO’), 
(eoz‘A’J’) is completely controllable. It is easily shown that  this 
condition is satisfied if A’,J’ is a.controllable pair. 

The follorving observation facilitates the const,fuction of A (or h) 
and q - 1  (or Yo-’). 

Obsenldiunn: The  matrix C can always be arranged so that C = 

[Cl C2] where G is an r X r dimensional nonsingular matrix  in 
which case 11 and *- l  can be obtained as follows: 

The main result. is given in the following theorem which reduces 
the problem of solving (1) and (2) to  that, of solving a reduced order 
Riccati equat.ion. 

Theorem 1: P is a solut.ion of (1) and (2) iff’ 

I-’ = ( q 0 - l )  diag(O,,pB)(\Eo-l)’ ( 7 4  

where p22 is a  solution of t.he (n  - r )  X (n - r )  Riccati equation 

p?z(E)ta’A’Ao’) + !AoAeot)p,  - mz(JAeoJS-I(JAem)m 
+ (A0:llAo’) = 0. (Tb) 

Prooj of Theorem 1: Postmultiply (1) by * o r  and note  that. 
C q o - 1  = [ I ,  OIX(n-i)] to obt,ain 

0 = CP!Po’ = C*0-1*oP\Eo’ = [znlOrX(n-r)]P (5) 

where 

n n . - r  

From (8) it is c1ea.r that 

PI1 = or, PI? = OIX(7w) .  (10) 

Only BZ remains t.o he  determined. The following formulae will 
be useful: 

( I  - CO*C) = Yo-’E\Eo, where = diag (Or,Zn-,) ( l la )  

(Ilc) 

++tf 
r n - r  

Prenlultiply (2) by \ E o  and postmultiply by \Ira' and  make use of the 
definit.ion (9) to obt.ain 

p{ \Eo(Z - Co*C)A\Eo-’)’+ (\Eo(Z - C‘o*C)APo-’]p 

- p[(yo-’)’-~’J’S-’JAYo-’]p + Q o M \ k o ’  0. (12) 

Making  use of (IO) and (11) in (12) it, is readily  found that. hz must 
satisfy (7). 

Bn important observation is stated in the following corollary. 
Corollary: Let p 2 2  be t.he maximal solution of (7) and J = C.  Then 

AAOz is asymptotically  stable. 
Prooj: Consider the regulator interpretation of (ib).  That is, 

Boz’A’Ao’ is the open-loop system mat.rix, eOz’A’J‘ is the gain matrix 
and S and h0NA4o‘  the control and  state weighting matrices, respec- 
tively. Since the  pair ~,,~’A‘AO‘ and eoz‘A’J’ is completely con- 
t.rollable, then with p 2 2  the maximal solution of (7b), the closed-loop 
syst.em mat.rix 

Ba = (302’A’ho‘ - ea’A’J’S-1JABOp2i (13) 

is asymptotically st.able. Moreover, simple comput.ation shows that 

and 

Thus, t.hese two matrices are similar and have the  same eigenvalues. 
Consequently, Bz’A‘li’ has the  same eigenvalues a5 A22 and is 
asyn1ptot.ically stable. 

111. M I N I M A L  ORDER OBS~SRVER DI~CSIGN 

Consider a linear time-invariant. plant 

x = Ax + Bu 
y = cx 

where x, .u, y are vectors of order n, m, t 5 n, respectively. It is 
assumed that. ( A C )  is completely observable and t.hat. C is of full 
rank. A p-dimensional linear system 

2 = Fz + Gy + Hu 

w = w [ ;] 
where z, 20 are vect.ors of order p, n, respect,ively, and W is an n X 
( p  + r )  matrix is called an observer or an  asymptotic  state  estimator 
for t.he system (16) if 

It is well known [4]-[7] that. (17) is an observer for (16) if and only if: 
1) P is asyinptot.ically stable (ReXi(F) < 0, i = 1,2,. . .,p) 
2) There exists a  p X n matrix T such  that 

T A  - FT = GC 

3 )  H = T B  

4) the  matrix W satisfies 

Furthermore,  the minimum dimension of p is p = n - r a.nd a 
minimal order  observer exists: for (16). 

The  fundamental problem of observer theory is t.he selection of the 
parameters F, G, H ,  and W such t.hat (19) is sat.isfied. This is usually 
accomplished by selecting T to  satisfy  (19b) and so that  the eigen- 
values of F are assigned specified values. Several  algorithms  have 
been proposed [5 ] - [7 ]  for designing observers in this  manner and 
center  on placing the observed system  in  a  suit.able canonical form. 
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An alternative procedure proposed by Johnson [ l ]  and which can be possible to identify a known c l a s  of minimal order  observers as 
considerably 1- cumbersome to apply is stated below in t.erms of limiting f o r m  of Kalman estimat.ors for  appropriate opt,imal  estima- 
the  parameters defined in the previous section. tion problems with vanishing  observation noise. 

et,ers defined as follows and J = C: REFERENCKS 
Theorem. 2: An observer for (16) is given by (17) with the param- 

F = ,lAe?, G = AAC*, H = AB, w = [edc*], T = A. (20) 

Proof: It. is necessary to show that  the conditions (19) are 
sat.isfied. By the Corollary to Theorem I ,  F = AAOn is asymptotically 
st.able and (19a) is satisfied. Condition (19b) is verified by com- 
pntat.ion. 

T A  - FT = AA - AA&h 

= AA - A A [ I  - C*C] = GC. 

(19c) is obvious and (19d) is again verified by comput,ation. 

IV. SINGULAR ESTIMATION ASD COXTROL 
It will  now be shown how t,he results of the previous sect.ions  re1at.e 

to certain  singular problems of optimal est.imation and control. In 
part.icular, if the following choices are made: 

J = C, 
S = CZC’, 2 2 0 such that S-1 exists 

c* = zc‘(Czc’)-l 
M O  = z: - zc’(czc‘)-’c2, 

(21 1 

t.hen the  parameters of Theorem 2 yieId an observer which is the 
limiting form of the  Kalman estimator [2] for the system 

z = Ax + BU + u, 
Y = cr + 7, 

(32) 

‘m c o d q )  + 0 where u, 7 are zero mean, whit.e Gaussian signals wit.h 
cov(0) = x. 

I t  is also noted that  the singular problem of optimallJ- regulating 
the completely controllable process 

i = A x  + Bu 

with respect to  the performance irides 

is solved by the control law [3] 

I(.* = -(B’QB)-’(B’A‘P + B’Q)dr 

provided that (B‘QB) is nonsingular and where P satisfies (I), (2) 
with the following replacements 

CO’ -+ QB(B‘QB)-’B’ 

C = J+R’  
A + A ‘  

S - (B’QB) 
211 + Q - QB(B’QB)-‘B’Q. 

Accordingly, P can be obt.ained via solntion of a redllced order 
Riccati  equation  as described in  Theorem 1. 

It,-. C O W L C X I X S  

I t  has been shown that  an n x n dimensional R.iccati eqnation of 
particular structure can be reduced to  an (n - r )  x (n - r )  dimen- 
sional equation. It aas  noted that such  equations arise in certain 
singular problems of optimal  estimation and eoutrol. A s  n result it is 
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On the Cancellation of Multivariable System Zeros  by 
State Feedback 

W. A. WOLO\TCH 

Abstract-The fact  that all of the defined  zeros of a proper linear 
multivariable system  can  be cancelled by an appropiate linear  state 
variable feedback control  law is constructively established, 

INTRODUCTION 

In t.he case of a scalar (single input/output) linear syst.em charac- 
terized by a rat,ional transfer  function, f(s) = r(s)!p(s),  it  is  well 
known t.hat linear state variable feedback (Isvf) can be  wed  to com- 
pletely and  arbitrarily assign all (n) poles of the closed-loop transfer 
function, t f ( s )  = ~ ( s ) ! p f ( s ) ;  i.e., the zeros of p ~ ( s ) .  Therefore, if t (s)  
is proper (if the degree of ~ ( s )  does not. exceed the degree of p ( s ) )  
lsvf ean be used to “completelg cancel” all of the zerm of [rcs)] the 
system. The  primary purpose of t.his note is to formally  extend this 
result to include linear mu1t.ivariable systems,’ and we begin by re- 
viewing some consequences of lsrf compensation in t.he multivariable 
case. 

STATE FEED~ACK PRELIMIK.%RIES 

I t  is --ell known [ I ] ,  [ 2 ]  t.hat the ( p  X m )  transfer  matrix, T(s) ,  of a 
linear, t,ime-invariant, multivariable  system  can be factored  as  the 
product 

T ( s )  = R(s)P(s)-’ (1) 

mrhere R(s)  and P ( s )  are relatively  right  prime polynomial mat.ric9 
in the Laplace  operator s, and P ( s )  is column. proper (defined as the 
condition that  the real matrix consisting of the coefficients of the 
highest. degree s-term or terms in each collum of P ( s )  be of full 
rank). Furthermore,  it is also well known [3] that if T ( s )  is a proper 
transfer  matrix, then  the degree of each column of R(s)  will be no 
greater  than t,he degree of each corresponding column of P ( s ) ;  a 
relat,ion which we succinctly express s 

It. is of inters t  t.o note  that (2) holds for any factorization, R(s)  
P(s)-’, of the proper  transfer matrix T ( s ) ;  i.e., whether P ( s )  is 
column proper or not. 

Sational  Science  Foundation Granr h >F GK-H)493S and  the  .\ir  Force Office 
Manueeript  received .January i .  I9i+;This work was supported  in  part  hy  the 

oi Scientific  Research Granr :\FOPR 71-2078. 

i: .)a .-t e m s  nro\vn Universit:-. Providence,  R.I. 0291‘2. 
The  author  is a-it11 the Division of Engineerinp  and the Center  for  Dynamical 

ear multivariable system  characterized by a proper rat.ional transier mat.rix has 
1 The  fact  that. 1sx-f ran  he used to  completely  rancel all of the zeros of a fin- 

already  been  noted, [11.[21 but  not formally established. 


