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We remark that for ¢ = 0 the invertibility question is trivial, for
g = 1 our result is the same as the Sain—Massey result, and our
result is stronger for ¢ > 1. In particular, if D = 0, we have

Corollary 2: The system

z(k+ 1)
y(k)

is invertible if and only if it is (n — m 4 1) — delay invertible.

We also have the following strengthened corollary, the proof of
which involves a trivial modification of the analogous result in [1]
if we keep the above proof of Corollary 1 in mind.

Corollary 3: The system (3),(4) is invertible if and only if there is
no input segment Un_y.1 # 0 followed by all zeroes, which produces
the all zero output sequence in (3),(4) when z, = 0.

Similarly, we obtain a strengthened version of the single matrix
result in [1] and [3].

Theorem 2: The system (3),(4) is invertible if and only if

A (k) + B u(k)
C (k)

(25)
(26)

1

rank (N) = (n — ¢ + 2)m 27)
where ¥ is the (2n — g + 2)p X (n — ¢ + 2)m matrix
- D 0 e 0 ]
C B D -0
N = CAB CAr—<B ... D (28)
C An—et1B (C Ar—B CB
| CA»-eB (¢ Aw-em1B ¢ A»1B ], | |
Corollary 4: The rank condition

rank (¥) = (n — ¢ + 2)m (29)

holds if and only if

B <o

We also note that in a similar manner one can obtain strengthened
versions of the necessary and sufficient conditions, presented in [1]
and |3], for the dual concept of functional controllability.

rank (M, gn) — rank (M,_,) = m.

IV. CoNcLUSIONS

In this note we have obtained a strengthened version of the
necessary and sufficient conditions, derived in [1]-[3], for linear
system invertibility. These results reduce the question of inverti-
bility to a set of rank tests for certain matrices, and our strengthening
of these results depends on a careful counting argument.

The question of system invertibility is important in such applica-
tions as the design of encoding-decoding systems, and has received a
great deal of attention in the literature. We refer the reader to more
general invertibility results in [6]-{9]. In particular the finite group
system resulis in [6]—[8] are quite similar in flavor to the results in
[1]1-[3] and in this note.
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Minimal Order Observers and Certain Singular Problems
of Optimal Estimation and Control

HARRY G. KWATNY

Abstract—It is shown that a Riccati equation of particular struc-
ture which arises in a number of singular optimal estimation and
control processes can be reduced in order. This fact leads directly
to a procedure for the design of a class of minimal order observers,
the structure of which can be interpreted as the limiting form of
appropriate Kalman estimators with vanishing observation noise.

I. INTRODTCTION

As might be anticipated, the theory of minimal order observers
can be closely allied with certain singular problems of optimal
estimation and control. This commonality is particularly striking
when it is recognized that minimal order observer design can be
accomplished through solution of a matrix Riecati equation which
is identical in structure to those arising in singular optimal regulator
problems and which admits a reduction in order.

It is known that the problem of minimal order observer design for
an nth order, completely observable system with r independent
outputs can be conveniently solved by solution of an (n — r) X
(n — r) dimension matrix Riceati equation [1].

In what follows it is shown that the required Riccati equation can
be derived through reduction of a larger n X » Riccati equation and
that, in appropriate circumstances, observers designed in this way
are limiting forms of Kalman estimators for vanishing observation
noise in the sense of Friedland [2]. Furthermore, it is observed that
certain Riceati equations obtained by Friedland [2] and Moylan and
Moore [3] for singular optimal regulator problems are structured
identically to that obtained for the observer design problem and can
be reduced in order. Certain problems of estimating the state of a
linear dynamical system from observation of outputs corrupted by
correlated noise are duals of these singular regulator problems and
consequently can be solved by identical procedures.

II. OrpEr REDUCTION OF A CLass oF Riccari EQuaTioNs

Let €' be an 7 X n matrix of full rank and let Co* denote a right
inverse of C.
Let P be an n X n symmetric matrix which satisfies the relation

CP =0 (1)
as well as the algebraic Riccati equation
PA'[I — Co*CY + [ — Co*ClAP — PA'J'STWJAP + M =0 (2)

where 8 > 0 is a symmetric 7 X r matrix, M > 0 is a symmetric
n X n matrix which has the property

CiM = 0. (3)

Jis an r X = matrix which will be required to satisfy a controllability
condition given below. A method will be given for obtaining P
satisfying both (1) and (2) by solving a Riceati equation of dimension
n—7r)X {n—r1)
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TECHNICAL NOTES AND CORRESPONDENCE

Define another right inverse of C
C* = C* + PA'J'S? (4)

and also the matrices Ao, ¥o, 8 and A, ¥, O as follows:
Ao, A are (n — r) X n matrices composed, respectively, of n — r
linearly independent rows of [I — Co*C] and [I — C*C)
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The controllability requirement imposed on J can now be stated.
It is assumed that J is specified such that the pair (0e'4’Ad’),
(Bp’A’J’) is completely controllable. It is easily shown that this
condition is satisfied if A’,J’ is a controllable pair.

The following observation facilitates the constiuction of A (or Ag)
and ¥~1 (or ¥p ).

Observation: The matrix C can always be arranged so that C =
[Ci Cs] where C» is an r X r dimensional nonsingular matrix in
which case A and ¥ ! can be obtained as follows:

T C* I n—r
A= []n_r — Cl*Cli — (1 *Cy), CF = I:‘E;;']i r (6a)
N _C_Y_lii_.._{f__f__.-:] 6b
Co* | —Cy71Cy (6b)

The main result i1s given in the following theorem which reduces
- the problem of solving (1) and (2) to that of solving a reduced order
Riceati equation.
Theorem 1: P is a solution of (1) and (2) iff

= (¥ 1) diag(0, p2e)(¥o 1) (7a)
where ps is a solution of the (n — r) X (n — r) Ricecati equation
PO’ A'Ay) + (AoAOu)pn — p2(JABw)'S I (JABk)px

4+ (Ao Ay) = (7b)

Proof of Theorem I: Postmultiply (1) by ¥, and note that
C¥7 1 = [I, Urxta_n] to obiain

= CP¥ = C¥y W PY = [I,.lO,-x(,._r)]p (8)
where
Ve |37
P12 v P2 9
- >
n n—r

From (8) it is clear that
pit = O, p12 = Orytun). (10)

Only p» remains to be determined. The following formulae will
be useful:

(I — Co*C) = ¥, 1E¥,, where E = diag (0,,1,_,) (11a)
Wl — CotCyAwe-t = | i 1ib
’ e AoABuiiAcAOr, (11b)
vorwy = | 20
W= | G A T = s (1le)
> 6
r n—7r

Premultiply (2) by ¥, and postmultiply by ¥;" and make use of the
definition (9) to obtain

o{ ¥l — C*CYAYT ) + {¥o(T — C*C)A¥ 1} p

— p[(Fo V) A T'SITAY ] p + LoMTy = 0. (12)

Making use of (10) and (11) in (12) it is readily found that ps must
satisfy (7).

An important observation is stated in the following corollary.
Corollary: Let pp be the maximal solution of (7)and J = C. Then
AA®, is asymptotically stable.

Proof: Consider the regulator interpretation .of (7b). That is,
Ou’ A’ Ao’ is the operni-loop system matrix, 8’A’J’ is the gain matrix
and 8 and A,M A, the control and state weighting matrices, respec-
tively. Since the pair 0p’4d’As’ and ©0’A’J’ is completely con-
trollable, then with py the maximal solution of (7b), the closed-loop
system matrix

Az = 0’ A’Ay — B’ A'J'S™T ABwpu (13)

is asymptotically stable. Moreover, simple computation shows that

. iy
(T ) A{T — C*C W = [onx,; -.-ff] (14)
1A
and
N T VP ?91:11_’_‘},’_] -
) AT ~ C*CYY = [onxr.e_,A,A, . (15)

Thus, these two matrices are similar and have the same eigenvalues.
Consequently, 6.’A’A’ has the same eigenvalues as Az and is
asymptotically stable.

I1I. MiniMaL OrpeEr OBsERVER DESIGN

Congider a linear time-invariant plant

r = Ax + Bu

s (16)

where z, u, i are vectors of order n, m, * < n, respectively. It is
assumed that (4C) is completely observable and that € is of full
rank. A p-dimensional linear system

2z = Fz+ Gy + Hu

w =W [E]
: Yy

where 2, w are vectors of order p, n, respectively, and W is an n X
(p + r) matrix is called an observer or an asymptotic state estimator
for the system (16) if

lim {z(t) — w@)} =

t—r oo

(17)

(18)

It is well known [4]-[7] that (17) is an observer for (16) if and only if:
1) Fis asymptotically stable (Rex:(#) < 0,7 = 1,2,--+,p)
2) There exists a p X n matrix 7" such that

TA — FT = GC
3) H=1TB

19)

4) the matrix W satisfies

T
L=W|=|
H

Furthermore, the minimum dimension of p is p =mn — rand a
minimal order observer exists for (16).

The fundamental problem of observer theory is the selection of the
parameters F, G, H, and W such that (19) is satisfied. This is usually
accomplished by selecting 7' to satisfy (19b) and so that the eigen~
values of F are assigned specified values. Several algorithms have
been proposed [5]-[7] for desighing observers in this manner and
center on placing the observed systém in a suitable canonical form.
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An alternative procedure proposed by Johnson [1] and which can be
considerably less cumbersome to apply is stated below in terms of
the parameters defined in the previous section.

Theorem 2: An observer for (16) is given by (17) with the param-
eters defined as follows and J = C:

F = AAG:, G = AAC* H = AB, W = [0,C*], T = A. (20)

Proof: Tt is necessary to show that the conditions (19) are
satisfied. By the Corollary to Theorem 1, F = AA8;is asymptotically
stable and (19a) is satisfied. Condition (19b) is verified by com-
putation.

TA — FT = AA ~ AAGA
= AA — AA[l — C*C] =

(19c) is obvious and (19d) is again verified by computation.

T . A ]
W l:"(‘:,‘] = [0y C¥] ['C’,‘] = 64 + C*C = ..

1V, SinguLar EsTiMmaTION AND CONTROL
It will now be shown how the results of the previous sections relate

to certain singular problems of optimal estimation and control. In
particular, if the following choices are made:

J =C,

S C=ZC’, £ > 0 such that 8! exists

C* = ZC(C=C)1

MY = 3 — ZO(CZC')"ICE,

21

then the parameters of Theorem 2 yield an observer which is the
limiting form of the Kalman estimator [2] for the system

£ = Az + Bu + o,
y=CT+77y

(22)

as eov(n) — O where o, y are zero mean, white Gaussian signals with
covieg) =

It is also noted that the singular problem of optimally regulating
the completely controllable process

= Ax + Bu

with respect to the performance index

V= f 'Qx di
0

is solved by the control law [3]
w* = —~(B'QB)"Y(B'A’'P + B'Q)Az

provided that (B‘QB) is nonsingular and where P satisfies (1), (2)
with the following replacements

* — QB(B'QB)"\B’

C=J—-5

A— A4’

S — (B'QB)

M —-Q — QB(B'QB)B'Q.
Accordingly, P can be obtained via solution of a reduced order
Riceati equation as described in Theorem 1.

IV. ConcLusioNs

1t has been shown that an n X n dimensional Riceati equation of
particular structure can be reduced to an (n — ) X (n — r) dimen-
sional equation, It was noted that such equations arise in certain
singular problems of optimal estimation and coutrol. As a result 1t is
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possible to identify a known class of minimal order observers as
limiting forms of Kalman estimators for appropriate optimal estima-
tion problems with vanishing observation noise.
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On the Cancellation of Multivariable System Zeros by
State Feedback

W. A, WOLOVICH

Abstract—The fact that all of the defined zeros of a proper linear
multivariable system can be cancelled by an appropiate linear state
variable feedback control law is constructively established.

INTRODUCTION

In the case of a scalar (single input/output) linear system charac-
terized by a rational transfer function, i(s) = r(s)/p(s), it is well
known that linear state variable feedback (lsvf) can be used to com-
pletely and arbitrarily assign all (n) poles of the closed-loop transfer
function, {;(s) = 7(s)/ps(s); i.e., the zeros of ps(s). Therefore, if i(s)
is proper (if the degree of r(s) does not exceed the degree of p(s))
lsvf can be used to “completely cancel’” all of the zeros of [r(s)] the
system. The primary purpose of this note is to formally extend this
result to include linear multivariable systems,! and we begin by re~
viewing some consequences of Isvf compensation in the multivariable
case.

STAaTE FEEDBACK PRELIMINARIES

It is well known [1],[2] that the (p X m) transfer matrix, T(s), of a
linear, time-invariant, multivariable system can be factored as the
product

T(s) = R(s)P(s)™* 1)
where R(s) and P(s) are relatively right prime polynomial matrices
in the Laplace operator s, and P(s) is column proper (defined as the
condition that the real matrix consisting of the coefficients of the
highest degree s~term or terms in each column of P(s) be of full
rank). Furthermore, it is also well known [3] that if 7(s) is a proper
transfer matrix, then the degree of each column of R(s) will be no
greater than the degree of each corresponding column of P(s); a
relation which we succinetly express as

3[R(s)] < 8:[P(s)]. 2)

It is of interest to note that (2) holds for anyv factorization, R(s)
P(s)71, of the proper transfer matrix 7'(s); i.e., whether P(s) is
column proper or not.
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I The fact that lsvf can be used to comp]etel\ cancel all of the zeros of 2 lin-
ear multivariable system characterized by a proper rational transier matrix has
already been noted, [1].[2] but not formally established.



